Statistics Lecture Notes (2024/2025)

Griffin Reimerink

Contents

1	Probability Theory recap 1.1 Law of Large Numbers	
2	Statistics 2.1 Random samples	3
	2.2 Sufficient statistics	3
3	Estimators	4
	3.1 Estimators Stimators 3.2 Rao-Blackwell theorem Stimators	
4	Statistical tests	6
	4.1 Introduction	
	4.2 Gaussian and Likelihood Ratio tests	
	4.3 UMP tests	
	4.4 Student's t-test	
	4.5 Confidence intervals	Ö
5	Asymptotic statistics	9
	5.1 Consistent estimators	
	5.2 Convergence in distribution	
	5.3 Asymptotic efficiency	10

Probability Theory recap 1

Law of Large Numbers 1.1

Definition Convergence in probability

A sequence of random variables X_1, X_2, \ldots converges in probability to c (notation: $X_n \xrightarrow[n \to \infty]{P} c$) if

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} P(|X_n - c| > \varepsilon) = 0$$

Proposition Law of Large Numbers

Let $X \sim \mathcal{F}_{\theta}$ be a random sample. Then $\overline{X}_n \xrightarrow[n \to \infty]{P} E[X_1]$.

More generally, for any $k \in \mathbb{N}$:

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow[n \to \infty]{P} E[X_1^k]$$

Proposition

Let X_1, \ldots, X_n be an i.i.d. random sample and g a measurable function.

Then $g(X_1), \ldots, g(X_n)$ is also an i.i.d. random sample, which the Law of Large Numbers also applies to.

Expectation, variance, covariance 1.2

Definition Expectation and (co)variance

 $V(X) = \int_{S} (x - E[X])^{2} \cdot f_{\theta}(x) dx$ If X is continuous: $E[X] = \int_{S} x \cdot f_{\theta}(x) dx$

 $V(X) = \sum_{S} (x - E[X])^2 \cdot f_{\theta}(x)$ $E[X] = \sum x \cdot f_{\theta}(x)$ If X is discrete:

 $Cov(X, Y)^{s} = E[(X - E[X])(Y - E[Y])]$ Covariance:

Rules for expectation and (co)variance

Consider two random variables X, Y and constant $c \in \mathbb{R}$:

- E[X + Y] = E[X] + E[Y]
- $E[cX] = c \cdot E[X]$
- $V(X + Y) = V(X) + Y(Y) + 2 \cdot Cov(X, Y)$
- $V(cX) = c^2 \cdot V(X)$
- If X, Y independent, then Cov(X, Y) = 0
- If X, Y independent, then V(X + Y) = V(X) + V(Y)
- $V(X) = E[X^2] E[X]^2$

Let X_1,\ldots,X_n be a random sample: \bullet $E[\overline{X}_n]=E[X_1]$

- $V(\overline{X}_n) = \frac{1}{n}V(X_1)$

2 Statistics

2.1 Random samples

Definition Random sample, statistic

A random sample of size n is a collection of n i.i.d. random variables X_1, \ldots, X_n .

For a size n random sample from a distribution \mathcal{F}_{θ} we use the notation $X_1,\ldots,X_n\sim\mathcal{F}_{\theta}$

A **statistic** is an observable function T of a collection of random variables such that T does not depend on any unknown parameters.

Let $T:\mathbb{R}^n\to\mathbb{R}$ be a statistic. Then $T(X_1,\ldots,X_n)$ is a random variable, with density $f_\theta(t(x_1,\ldots,x_n))$

Definition Sample mean

Given random variables X_1, \ldots, X_n with realizations x_1, \ldots, x_n we define:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \qquad \overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Definition Conditional density

$$f_{\theta}(x_1, \dots, x_k | x_{k+1}, \dots, x_n) = \frac{f_{\theta}(x_1, \dots, x_n)}{f_{\theta}(x_{k+1}, \dots, x_n)}$$

$$f_{\theta}(x_1, \dots, x_n | t(x_1, \dots, x_n)) = \frac{f_{\theta}(x_1, \dots, x_n, t(x_1, \dots, x_n))}{f_{\theta}(t(x_1, \dots, x_n))}$$

From now on we will use X and x as shorthand notations for X_1, \ldots, X_n and x_1, \ldots, x_n respectively.

2.2 Sufficient statistics

Definition Sufficient statistic

A statistic T is called **sufficient** for θ if the conditional density of X given T(X) does not depend on θ :

$$f_{\theta}(x|t(x)) = f(x|t(x))$$

Proposition Factorization theorem

Given a random sample $X \sim \mathcal{F}_{\theta}$, then

T is a sufficient statistic for θ if and only if the joint density $f_{\theta}(x)$ of X can be factorized into:

$$f_{\theta}(x) = g(t(x); \theta) \cdot h(x)$$
 for all $x = (x_1, \dots, x_n) \in S_x$

Definition Exponential family

A distribution \mathcal{F}_{θ} with θ containing d parameters ($|\theta|=d$) belongs to the **exponential family** if the density f_{θ} of \mathcal{F}_{θ} can be decomposed into:

$$f_{\theta}(x) = h(x) \cdot \exp \left\{ \sum_{j=1}^{d} \eta_{j}(\theta) T_{j}(x) - A(\theta) \right\}$$

Proposition Sufficient statistics of exponential families

Let $X_1, \ldots, X_n \sim \mathcal{F}_{\theta}$ be a random sample from a distribution of an exponential family with d parameters. Then the sufficient statistics for θ are:

$$\left(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_d(X_i)\right)$$

3 Estimators

3.1 Estimators

MM (Method of Moments) estimator

Consider a distribution \mathcal{F}_{θ} , where θ covers d unknown parameters $(|\theta|=d)$ and a random sample from this distribution $X_1,\ldots,X_n\sim\mathcal{F}_{\theta}$.

We solve the following system of equations for θ to find the **MM estimator** for θ .

$$\frac{1}{n} \sum_{i=1}^{n} X_i = E[X_1]$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E[X_1^2]$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^n = E[X_1^n]$$

The estimator converges to the true parameters for large n. (Law of Large Numbers)

Definition Likelihood

The likelihood function is defined as:

$$L: \Theta \to \mathbb{R}_0^+$$
 $L(\theta) := f_{\theta}(x_1, \dots, x_n)$

ML (Maximum Likelihood) estimator

Given a sample $X_1, \ldots, X_n \sim \mathcal{F}_{\theta}$, the **ML estimator** of $\theta \in \Theta$ is defined as:

$$\hat{\theta}_{ML} := \underset{\theta \in \Theta}{\operatorname{argmax}} \{ L(\theta) \}$$

To compute this maximum we use derivatives. To make it easier to compute, we can use logarithms:

$$\hat{\theta}_{ML} := \operatorname*{argmax}_{\theta \in \Theta} \{L(\theta)\} = \operatorname*{argmax}_{\theta \in \Theta} \{\log(L(\theta))\}$$

Definition Bias

The estimator $\hat{\theta}_n$ is an **unbiased estimator** if for all $n \in \mathbb{N} : E[\hat{\theta}_n] = \theta$.

The estimator $\hat{\theta}_n$ is an asymptotically unbiased estimator of θ if for $n \to \infty$: $E[\hat{\theta}_n] \to \theta$.

The **bias** of the estimator $\hat{\theta}_n$ is defined as:

$$B(\hat{\theta}_n) := E[\hat{\theta}_n] - \theta$$

The **Mean Squared Error** (MSE) of $\hat{\theta}_n$ is defined as:

$$MSE(\hat{\theta}_n) := E[(\hat{\theta}_n - \theta)^2]$$

Proposition

$$MSE(\hat{\theta}_n) = V(\hat{\theta}_n) + B(\hat{\theta}_n)^2$$

Proposition Cramér-Rao theorem

Consider a random sample $X \sim \mathcal{F}_{\theta}$ of size n and an unbiased estimator $\hat{\theta} = \hat{\theta}(X)$ of θ . Then (under certain regulatory conditions):

$$V(\hat{\theta}(X)) \ge \frac{1}{E\left[\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log(f_{\theta}(X_1,\ldots,X_n))\right)^2\right]}$$

Proposition Cauchy-Schwarz inequality

$$|\operatorname{Cov}(Y,Z)| \le \sqrt{V(Y) \cdot V(Z)}$$

3.2 Rao-Blackwell theorem

Definition Joint, marginal and conditional densities

For two random variables X and Y with sample spaces S_X and S_Y we have:

- The joint density f(x,y).
- \bullet The marginal densities $f(x) = \int_{S_Y} f(x,y) \, \mathrm{d}y$ and $f(y) = \int_{S_X} f(x,y) \, \mathrm{d}x$
- The conditional densities $f(x \mid y) = \frac{f(x,y)}{f(y)}$ and $f(y \mid x) = \frac{f(x,y)}{f(x)}$

If X and Y are (statistically) **independent**, we have

$$f(x,y) = f(x) \cdot f(y)$$
 $f(x \mid y) = f(x)$ $f(y \mid x) = f(y)$

Definition Conditional expectation and variance

Consider two random variables X and Y with sample spaces S_X and S_Y .

The conditional expectation of X given Y = y (with $y \in S_Y$) is:

$$E[X \mid Y = y] = \int_{S_x} x \cdot f(x \mid y) \, \mathrm{d}x$$

The **conditional variance** of X given Y = y (with $y \in S_Y$) is:

$$V(X \mid Y = y) = E[X^2 \mid Y = y] - E[X \mid Y = y]^2$$

Note: $E[X \mid Y]$ and $V(X \mid Y)$ are random variables.

Proposition

$$E[X] = E[E[X \mid Y]]$$
 $V(X) = E[V(X \mid Y)] + V(E[X \mid Y])$

Definition Unbiased estimator of $g(\theta)$

Let $X \sim \mathcal{F}_{\theta}$ and $g: \Theta \to \mathbb{R}$. The statistic T(X) is called an **unbiased estimator** of $g(\theta)$ if

$$E[T(X)] = g(\theta) \ \forall \theta \in \Theta$$

Proposition Rao-Blackwell Theorem

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and a function $g: \Theta \to \mathbb{R}$. If:

- 1. The statistic W = W(X) is unbiased estimator of $g(\theta)$.
- 2. The statistic T = T(X) is sufficient for θ .

we can define a new estimator

$$\phi(T) := E[W \mid T]$$

with the properties:

- 1. $E[\phi(T)] = g(\theta)$, i.e. $\phi(T)$ is also an unbiased estimator of $g(\theta)$.
- 2. $V(\phi(T)) \leq V(W)$, i.e. the variance of $\phi(T)$ is potentially smaller than the variance of W

4 Statistical tests

4.1 Introduction

Definition Hypothesis test

Consider a random sample $X \sim \mathcal{F}_{\theta}$ with a **parameter space** Θ , which is the space of all possible parameters θ . We consider a partition of Θ :

$$\Theta = \Theta_0 \cup \Theta_1 \qquad \qquad \Theta_0 \cap \Theta_1 = \emptyset$$

A **statistical hypothesis** H is a statement about θ :

Null hypothesis $H_0: \theta \in \Theta_0$ Alternative hypothesis $H_1: \theta \in \Theta_1$

The test decision is typically based on a **test statistic** W=W(X) with $W:S_X\to\mathbb{R}$. We define a partition of \mathbb{R} into $\mathbb{R}=R\cup R^C$, where R is called the **rejection region**. And then we define the **decision rule** $D:S_X\to\{H_0,H_1\}$:

$$D(x) = \begin{cases} H_0 \text{ if } W(x) \in R^C \\ H_1 \text{ if } W(x) \in R \end{cases}$$

A good statistical test should fulfill:

$$P_{\theta}(W(X) \in R \mid H_1)$$
 is close to 1 $P_{\theta}(W(X) \in R \mid H_0)$ is close to 0

Definition Power function, test level, p-value

The **power function** of a statistical test is defined as:

$$\beta: \Theta \to [0,1]$$
 $\beta(\theta) = P_{\theta}(W(X) \in R)$

 $\beta(\theta)$ is the probability to decide for the alternative hypothesis H_1 , given that $\theta \in \Theta$ is the true parameter.

 $\beta(\theta)$ should be low for $\theta \in \Theta_0$ and high for $\theta \in \Theta_1$.

A statistical test is called a test to the **level** $\alpha \in [0,1]$ if $\sup_{\theta \in \Theta_{\alpha}} \beta(\theta) \leq \alpha$

The **p-value** is the lowest test level α to which H_0 could have been rejected.

Definition Test outcomes, type 1 and 2 error

- If H_0 is true and $D(x) = H_0$, then we stay with the null hypothesis, which is a good decision.
- If H_0 is true and $D(x) = H_1$, then we incorrectly reject H_0 , which is a **type 1 error**.
- If H_1 is true and $D(x) = H_0$, then we fail to reject H_0 , which is a **type 2 error**.
- If H_1 is true and $D(x) = H_1$, then we reject the null hypothesis, which is the purpose of the test.

Type 1 errors are a lot more critical than type 2 errors. The probability of a type 1 error is bounded by α . If H_0 is rejected, we call it a **significant test result**.

Definition Quantiles

Consider a random variable $X \sim \mathcal{F}_{\theta}$. The α -quantile q_{α} of the distribution F_{θ} is defined as:

$$P_{\theta}(X \leq q_{\alpha}) = \alpha \quad \text{or} \quad F_{\theta}(q_{\alpha}) = \alpha$$

where F_{θ} is the CDF of X. To determine q_{α} , one could compute the inverse CDF:

$$F_{\theta}(q_{\alpha}) = \alpha \iff q_{\alpha} = F_{\theta}^{-1}(\alpha)$$

4.2 Gaussian and Likelihood Ratio tests

Proposition Properties of the Gaussian distribution

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $a, b \in \mathbb{R}$

$$a \cdot (X+b) \sim \mathcal{N}(a \cdot (\mu+b), a^2 \cdot \sigma^2)$$

$$\frac{1}{\sigma} \cdot (X-\mu) \sim \mathcal{N}(0,1)$$

Consider a random sample $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$.

$$\frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu) \sim \mathcal{N}(0, 1)$$

Proposition

The sum of exponential distributed random variables is Gamma distributed.

Definition Likelihood ratio test

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and test problem $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$.

The likelihood ratio (LR) test statistic is defined as:

$$\lambda(X) := \frac{\sup\limits_{\theta \in \Theta_0} L_x(\theta)}{\sup\limits_{\theta \in \Theta_0 \cup \Theta_1} L_x(\theta)} \quad \text{ where } L_x(.) \text{ is the likelihood}$$

A likelihood ratio test (LRT) makes use of the LR test statistic, with the decision rule:

$$D_{\lambda} = \begin{cases} H_0 & \text{if } \lambda(X) > c \\ H_1 & \text{if } \lambda(X) \le c \end{cases}$$

The test level α depends on the value of c.

4.3 **UMP** tests

Definition Uniform most powerful (UMP) test

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and test problem $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$.

A test D(X) is the **UMP test** if all other tests D(X) to the same level α have less power on Θ_1 :

$$P_{\theta}(D(X) = H_1) \ge P_{\theta}(\widetilde{D}(X) = H_1)$$
 for all $\theta \in \Theta_1$

Proposition Neyman-Pearson lemma

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and the simple test problem $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$. A test with the following test statistic, rejection region and decision rule:

$$W(X) = \frac{f_{\theta_0}(X)}{f_{\theta_1}(X)} \qquad \qquad R = \left\{ x \in S_x : W(x) < k \right\} \qquad \quad D(X) = \begin{cases} H_1 & \text{if } W(X) < k \\ H_0 & \text{if } W(X) \geq k \end{cases}$$

is the UMP test of level $\alpha := P_{\theta_0}(W(X) < k)$.

This lemma also holds with test statistic W(T(X)) instead of W(X), where T(X) is a sufficient statistic. W(X) is called the **density ratio** and W(T(X)) is called the **sufficient statistic density ratio**.

Definition Monotone likelihood ratio

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and a sufficient statistic T(X).

T(X) has a **monotone likelihood ratio** if $W(t):=rac{f_{T, heta_0}(t)}{f_{T, heta_1}(t)}$ is a monotone function of $t\in S_T$.

Proposition Karlin-Rubin theorem

Consider a random sample $X \sim \mathcal{F}_{\theta}$, a sufficient statistic T(X) with a monotone likelihood ratio, and the composite test problem $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$

- If $\overline{T(X)}$ has a monotonically decreasing likelihood ratio, then the test that rejects H_0 if $T > t_0$ is UMP of the level $\alpha = P_{\theta_0}(\overline{T(X)} > t_0)$.
- If T(X) has a monotonically increasing likelihood ratio, then the test that rejects H_0 if $T < t_0$ is UMP of the level $\alpha = P_{\theta_0}(\overline{T(X)} < t_0)$.

4.4 Student's t-test

Degrees of freedom

Let X_1, \ldots, X_n be a random sample. Introducing an estimator (for example the arithmetic mean or empirical variance) leads to the loss of 1 **degree of freedom**, since 1 variable from the sample will depend on the others. This makes the effective sample size n-1 instead of n.

Definition Chi-squared distribution

Consider a sample from a standard Gaussian distribution $X_1,\ldots,X_n\sim\mathcal{N}(0,1)$. Then the random variable:

$$S := \sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$

is **Chi-Square distributed** with n degrees of freedom, with expectation n and variance 2n.

Definition t-distribution

Consider a standard Gaussian distributed random variable $X \sim \mathcal{N}(0,1)$ and a Chi-square distributed random variable $S \sim \chi_n^2$ with n degrees of freedom. If X and S are statistically independent, then the random variable:

$$T = \frac{X}{\sqrt{\frac{1}{n}S}} \sim t_n$$

is **t-distributed** with n degrees of freedom, with expectation 0 and for n > 2, variance $\frac{n}{n-2}$.

For $n \to \infty$ we have: $t_n \xrightarrow{D} \mathcal{N}(0,1)$. For n > 30, $\mathcal{N}(0,1)$ is a good approximation for the t-distribution.

A Gaussian distribution turns into a t-distribution with n-1 degrees of freedom if we replace σ^2 with an estimator.

Definition F-distribution

Consider two Chi-square distributed random variables $S_1 \sim \chi^2_{n_1}$ and $S_2 \sim \chi^2_{n_1}$ with n_1 and n_2 degrees of freedom. If S1 and S2 are statistically independent, then the random variable:

$$F = \frac{\frac{1}{n_1} \cdot S_1}{\frac{1}{n_2} \cdot S_2} \sim F_{n_1, n_2}$$

is **F-distributed** with parameters n_1 and n_2 .

4.5 Confidence intervals

Definition Confidence interval

Consider a random sample $X \sim \mathcal{F}_{\theta}$ with $\theta \in \Theta$. An interval [L(X), U(X)] that contains the unknown parameter θ with probability $1 - \alpha$ is called a $1 - \alpha$ confidence interval for θ . We have:

$$P_{\theta}(L(X) \le \theta \le U(X) \ge 1 - \alpha \quad \forall \theta \in \Theta \iff \inf_{\theta \in \Theta} \{P_{\theta}(L(X) \le \theta \le U(X))\} \ge 1 - \alpha$$

L(X) and U(X) are statistics, and $1-\alpha$ is called the **confidence coefficient**.

Confidence intervals can be one-sided, i.e. $L(X) = -\infty$ or $U(X) = \infty$

Analytically, we can only compute exact confidence intervals for Gaussian distributions.

5 Asymptotic statistics

5.1 Consistent estimators

Definition Convergence in probability

A sequence of random variables X_1, X_2, \ldots converges in probability to c (notation: $X_n \xrightarrow[n \to \infty]{P} c$) if

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} P(|X_n - c| > \varepsilon) = 0$$

Definition Consistent estimator

Consider a random sample $X \sim \mathcal{F}_{\theta}$ with $\theta \in \Theta$ and $n \in \mathbb{N}$. The estimator $\hat{\theta}_n$ is a **consistent estimator** if:

$$\forall \theta \in \Theta : \lim_{n \to \infty} \hat{\theta}_n \xrightarrow{P_{\theta}} \theta$$

Proposition

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and an estimator $\hat{\theta}_n$ of θ .

The estimator $\hat{\theta}_n$ is <u>consistent</u> if $\lim_{n\to\infty} E[\hat{\theta}_n] = \theta$ (i.e. $\hat{\theta}_n$ is asymp. unbiased) and $\lim_{n\to\infty} V(\hat{\theta}_n) = 0$.

Proposition Markov inequality

For a single random variable $X \sim \mathcal{F}_{\theta}$ with sample space $S_X \subseteq \mathbb{R}_0^+$, we have for all r > 0:

$$P_{\theta}(X \ge r) \le \frac{E[X]}{r}$$

and for any function $g: S_x \to \mathbb{R}_0^+$:

$$P_{\theta}(g(X) \ge r) \le \frac{E[g(X)]}{r}$$

Proposition Chebyshev inequality

For any random variable Y (with $V(Y) \leq \infty$) and any $\varepsilon > 0$:

$$P(|Y - E[Y]| > \varepsilon) \le \frac{V(Y)}{\varepsilon^2}$$

Proposition Jensen's inequality

Let $X \sim \mathbb{F}_{\theta}$ be a random variable on the possibly infinite interval (a,b) and let the function g(.) be differentiable and convex on (a,b). If E[X] and E[g(X)] both exist, then:

$$E[g(X)] \ge g(E[X])$$

Proposition Information inequality

Let $X \sim \mathcal{F}_{\theta}$ be a random variable with $\theta \in \Theta$ and density $f_{\theta}(.)$. Moreover let θ_0 be the true parameter. Then:

$$E_{\theta_0}[\log(f_{\theta_0}(X))] \ge E_{\theta_0}[\log(f_{\theta}(X))]$$

Proposition Consistency of the ML estimator

Let $X \sim \mathcal{F}_{\theta}$ be a random sample with $\theta \in \Theta$, and let θ_0 be the true parameter. Under the following conditions:

- The sample space S_X does not depend on θ .
- θ_0 is an interior point of Θ .
- ullet The log-likelihood $l_X(\theta)$ is differentiable in $\theta.$
- θ_0 is the unique solution of $l_X'(\theta) = 0$

the Maximum Likelihood estimator is consistent for θ_0 , i.e. it converges in probability to θ_0 for $n \to \infty$.

Definition Convergence in distribution

A sequence of random variables X_1, X_2, \ldots converges in distribution to X (notation: $X_n \xrightarrow[n \to \infty]{D} X$), if for all $x \in \mathbb{R}$ at which the CDF F_X of X is continuous:

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

5.2 Convergence in distribution

Proposition Central Limit Theorem

Given a random sample $X\sim \mathcal{F}_{\theta}$ with expectation $E[X_1]=\mu$ and variance $V(X_1)=\sigma^2<\infty$, then:

$$\sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma} \xrightarrow[n \to \infty]{D} \mathcal{N}(0, 1)$$

Proposition

For a sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ we have:

$$X_n \xrightarrow[n \to \infty]{P} X \implies X_n \xrightarrow[n \to \infty]{D} X$$

Proposition Continuous Mapping Theorem

Given $\{X_n\}_{n\in\mathbb{N}}$ and and a continuous function g, we have:

$$X_n \xrightarrow[n \to \infty]{P} X \implies g(X_n) \xrightarrow[n \to \infty]{P} X \qquad X_n \xrightarrow[n \to \infty]{D} X \implies g(X_n) \xrightarrow[n \to \infty]{D} X$$

Proposition Slutsky's theorem

For two sequences of random variables $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ with $X_n\xrightarrow[n\to\infty]{D}X$ and $Y_n\xrightarrow[n\to\infty]{P}c$, we have:

1.
$$X_n + Y_n \xrightarrow[n \to \infty]{D} X + c$$

$$2. \ X_n \cdot Y_n \xrightarrow[n \to \infty]{D} c \cdot X$$

3.
$$\frac{X_n}{Y_n} \xrightarrow[n \to \infty]{D} \frac{1}{c} \cdot X$$
 (if $c \neq 0$)

5.3 Asymptotic efficiency

Definition Expected Fisher information for n=1

Given a random sample $X \sim \mathcal{F}_{\theta}$, we define the **expected Fisher information** (of a sample of size n=1) as

$$I(\theta) = E\left[\left(\frac{\mathrm{d}}{\mathrm{d}\theta}l_{X_1}(\theta)\right)^2\right] = -E\left[\frac{\mathrm{d}^2}{\mathrm{d}\theta^2}l_{X_1}(\theta)\right] \qquad \text{where } l_{X_1} \text{ is the log-likelihood}$$

Definition Asymptotically efficient estimator

Given a random sample $X \sim \mathcal{F}_{\theta}$ with parameter space Θ , the estimator $\hat{\theta}$ of θ is an **efficient estimator** if:

for all
$$\theta \in \Theta$$
 $\sqrt{n} \cdot (\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{D} \mathcal{N}\left(0, I(\theta)^{-1}\right)$

Proposition Asymptotic efficiency of the ML estimator

Given a random sample $X \sim \mathcal{F}_{\theta}$, the ML estimator is asymptotically efficient under the following conditions:

- The parameter space $\Theta \subseteq \mathbb{R}$ must be open.
- The density f_{θ} must be 3-times differentiable w.r.t. θ .
- The sample space S_X is not allowed to depend on θ .

Proposition Asymptotic Likelihood Ratio test

Consider a random sample $X \sim \mathcal{F}_{\theta}$ and the test problem $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$ where Θ_0, Θ_1 is a partition. Consider the Likelihood Ratio test statistic:

$$\lambda_n(X) := \lambda(X_1, \dots, X_n) = \frac{\sup_{\theta \in \Theta_0} \{L_{X_1, \dots, X_n}(\theta)\}}{\sup_{\theta \in \Theta_0 \cup \Theta_1} \{L_{X_1, \dots, X_n}(\theta)\}}$$

Then under the following conditions:

- $\Theta \subseteq \mathbb{R}$ must be an open set.
- The density f_{θ} must be 3-times differentiable w.r.t. θ .
- ullet The sample space S_X is not allowed to depend on θ .

we have under H_0 ,

$$-2 \cdot \log(\lambda_n(X)) \xrightarrow[n \to \infty]{D} \chi_1^2$$

Asymptotic confidence interval

Using the asymptotic efficiency of the ML estimator, the $1-\alpha$ asymptotic confidence interval for θ is:

$$\left[\hat{\theta}_{ML,n} - \frac{q_{1-\alpha/2}}{\sqrt{n \cdot I(\theta)}}, \, \hat{\theta}_{ML,n} + \frac{q_{1-\alpha/2}}{\sqrt{n \cdot I(\theta)}}\right]$$

 $q_{1-\alpha/2}$ is a quantile of the Gaussian distribution and $I(\theta)$ is the Fisher information.

Since θ is unknown, we replace $I(\theta)$ by the observed Fisher information $I(\hat{\theta}_{ML,n})$.

Index

Karlin-Rubin theorem, 8

Alternative hypothesis, 6 Law of Large Numbers, 2 asymptotic confidence interval, 11 level, 6 Asymptotic efficiency of the ML estimator, 11 likelihood, 4 Asymptotic Likelihood Ratio test, 11 likelihood ratio (LR) test statistic, 7 asymptotically unbiased estimator, 4 likelihood ratio test (LRT), 7 bias, 4 marginal densities, 5 Markov inequality, 9 Cauchy-Schwarz inequality, 5 Mean Squared Error, 4 Central Limit Theorem, 10 ML estimator, 4 Chebyshev inequality, 9 MM estimator, 4 Chi-Square distributed, 8 monotone likelihood ratio, 7 conditional densities, 5 conditional expectation, 5 Neyman-Pearson lemma, 7 conditional variance, 5 Null hypothesis, 6 confidence coefficient, 8 p-value, 6 confidence interval, 8 parameter space, 6 Consistency of the ML estimator, 9 power function, 6 consistent estimator, 9 Properties of the Gaussian distribution, 7 Continuous Mapping Theorem, 10 Proposition, 2-5, 7-11 converges in distribution, 10 converges in probability, 2, 9 quantile, 6 Cramér-Rao theorem, 4 random sample, 3 decision rule, 6 Rao-Blackwell Theorem, 5 Definition, 2-10 rejection region, 6 degree of freedom, 8 density ratio, 7 significant test result, 6 Slutsky's theorem, 10 efficient estimator, 10 statistic, 3 expected Fisher information, 10 statistical hypothesis, 6 exponential family, 3 sufficient, 3 sufficient statistic density ratio, 7 F-distributed, 8 Sufficient statistics of exponential families, 3 Factorization theorem, 3 t-distributed, 8 independent, 5 test statistic, 6 Information inequality, 9 type 1 error, 6 Jensen's inequality, 9 type 2 error, 6 joint density, 5 UMP test, 7

unbiased estimator, 4, 5